Uji bukti mangrupikeun bagian integral tina pangropéa integritas kasalametan sistem instrumen kaamanan (SIS) sareng sistem anu aya hubunganana sareng kaamanan (sapertos alarm kritis, sistem seuneu & gas, sistem interlock instrumen, jsb.). Tés buktina nyaéta tés périodik pikeun ngadeteksi kagagalan anu bahaya, nguji fungsionalitas anu aya hubunganana sareng kaamanan (contona, reset, bypasses, alarm, diagnostik, shutdown manual, jsb.), sareng mastikeun sistem nyumponan standar perusahaan sareng éksternal. Hasil uji bukti ogé ukuran efektivitas program integritas mékanis SIS sareng réliabilitas sistem sistem.
Prosedur tés buktina nutupan léngkah-léngkah tés tina kéngingkeun ijin, ngadamel béwara sareng ngaleungitkeun sistem tina jasa pikeun nguji pikeun mastikeun tés komprehensif, ngadokumentasikeun tés buktina sareng hasilna, nempatkeun sistem deui dina jasa, sareng ngevaluasi hasil tés ayeuna sareng buktina saméméhna. hasil tés.
ANSI / ISA / IEC 61511-1, Klausa 16, nyertakeun tés buktina SIS. Laporan téknis ISA TR84.00.03 - "Integritas Mékanis Sistem Instrumen Kasalametan (SIS)," nyertakeun tés buktina sareng ayeuna nuju dirévisi kalayan versi énggal anu diperkirakeun kaluar pas. ISA laporan teknis TR96.05.02 - "In-situ Buktina Tés of Valves Otomatis" ayeuna dina ngembangkeun.
Laporan HSE UK CRR 428/2002 - "Prinsip pikeun nguji bukti sistem instrumen kaamanan dina industri kimia" nyayogikeun inpormasi ngeunaan uji bukti sareng naon anu dilakukeun ku perusahaan di Inggris.
Prosedur uji buktina dumasar kana analisa mode kagagalan bahaya anu dipikanyaho pikeun unggal komponén dina jalur perjalanan safety instrumented function (SIF), fungsionalitas SIF salaku sistem, sareng kumaha (sareng upami) nguji gagalna bahaya. modus. Pangwangunan prosedur kedah dimimitian dina fase desain SIF kalayan desain sistem, pilihan komponén, sareng tekad iraha sareng kumaha uji buktina. Instrumén SIS boga rupa-rupa tingkat kasulitan nguji bukti nu kudu dianggap dina desain SIF, operasi sarta perawatan. Salaku conto, méter orifice sareng pamancar tekanan langkung gampang diuji tibatan méter aliran massa Coriolis, méter mag atanapi sensor tingkat radar ngalangkungan hawa. Aplikasi sareng desain klep ogé tiasa mangaruhan komprehensif tina uji bukti klep pikeun mastikeun yén kagagalan anu bahaya sareng incipient kusabab degradasi, plugging atanapi kagagalan anu gumantung kana waktos henteu ngakibatkeun gagal kritis dina interval tés anu dipilih.
Nalika prosedur uji bukti biasana dikembangkeun salami fase rékayasa SIF, éta ogé kedah diulas ku situs Otoritas Téknis SIS, Operasi sareng teknisi alat anu bakal ngalakukeun tés. Analisis kaamanan padamelan (JSA) ogé kedah dilakukeun. Penting pikeun ngagaleuh pabrik ngeunaan tés naon anu bakal dilakukeun sareng iraha, sareng kelayakan fisik sareng kaamananana. Contona, teu aya gunana pikeun nangtukeun tés parsial-stroke nalika grup Operasi moal satuju pikeun ngalakukeunana. Disarankeun ogé yén prosedur tés buktina diulas ku ahli materi pelajaran mandiri (UKM). Uji khas anu dibutuhkeun pikeun uji bukti fungsi lengkep digambarkeun dina Gambar 1.
Syarat uji bukti fungsi lengkep Gambar 1: Spésifikasi uji bukti fungsi lengkep pikeun fungsi instrumen kaamanan (SIF) sareng sistem instrumen kaamanan (SIS) kedah ngéja atanapi ngarujuk kana léngkah-léngkah dina urutan tina persiapan tés sareng prosedur tés dugi ka béwara sareng dokuméntasi. .
Gambar 1: Spésifikasi tés bukti fungsi lengkep pikeun fungsi instrumen kaamanan (SIF) sareng sistem instrumen kaamanan (SIS) kedah ngéja atanapi ngarujuk kana léngkah-léngkah tina urutan tina persiapan tés sareng prosedur tés dugi ka béwara sareng dokuméntasi.
Uji bukti mangrupikeun tindakan pangropéa anu direncanakeun anu kedah dilakukeun ku tanaga kompeten anu dilatih dina uji SIS, prosedur buktina, sareng loop SIS anu bakal diuji. Kudu aya walk-through tina prosedur saméméh ngajalankeun test bukti awal, sarta eupan balik ka situs SIS Téknis Otoritas afterward pikeun perbaikan atawa koréksi.
Aya dua modeu gagal primér (aman atawa bahaya), nu dibagi kana opat mode-bahaya undetected, bahaya dideteksi (ku diagnostics), aman undetected jeung aman dideteksi. Istilah-istilah kagagalan anu bahaya sareng bahaya anu teu dideteksi dianggo silih ganti dina tulisan ieu.
Dina uji bukti SIF, kami utamina resep kana modeu kagagalan anu teu dideteksi bahaya, tapi upami aya diagnostik pangguna anu ngadeteksi gagal anu bahaya, diagnostik ieu kedah diuji buktina. Catet yén teu sapertos diagnostik pangguna, diagnostik internal alat biasana henteu tiasa disahkeun salaku fungsina ku pangguna, sareng ieu tiasa mangaruhan filosofi uji bukti. Nalika kiridit diagnostik dicandak dina itungan SIL, alarm diagnostik (misalna alarm di luar jangkauan) kedah diuji salaku bagian tina uji bukti.
Modeu gagalna tiasa dibagi deui kana anu diuji salami tés buktina, anu henteu diuji, sareng kagagalan awal atanapi kagagalan anu gumantung kana waktos. Sababaraha modeu kagagalan anu bahaya tiasa henteu langsung diuji pikeun sababaraha alesan (contona kasusah, rékayasa atanapi kaputusan operasional, kabodoan, henteu mampuh, kasalahan sistematis omission atanapi komisi, kamungkinan kajadian anu rendah, jsb.). Upami aya modeu gagal anu dipikanyaho anu moal diuji, kompensasi kedah dilakukeun dina desain alat, prosedur uji, ngagantian alat périodik atanapi ngawangun deui, sareng / atanapi uji inferensi kedah dilakukeun pikeun ngaminimalkeun pangaruh kana integritas SIF tina henteu nguji.
Kagagalan awal mangrupikeun kaayaan atanapi kaayaan anu ngahinakeun sahingga gagal kritis, bahaya tiasa disangka-sangka lumangsung upami tindakan koréksi henteu dilaksanakeun dina waktosna. Aranjeunna biasana dideteksi ku ngabandingkeun kinerja sareng tés bukti patokan anu anyar atanapi awal (contona tanda tangan klep atanapi waktos réspon klep) atanapi ku pamariksaan (contona port prosés anu dipasang). Kagagalan incipient biasana gumantung kana waktos-beuki lila alat atanapi rakitan dilayanan, langkung parah janten; kaayaan nu mempermudah hiji kagagalan acak jadi leuwih gampang, prosés port plugging atawa meta sensor kana waktu, hirup mangpaat geus béak, jsb Ku alatan éta, beuki lila interval test buktina, nu leuwih gampang hiji incipient atawa gagalna gumantung waktu. Sakur panyalindungan ngalawan kagagalan mimitina ogé kedah diuji buktina (purging port, tracing panas, jsb.).
Prosedur kudu ditulis pikeun nguji bukti pikeun gagal bahaya (teu kadeteksi). Mode gagal sareng analisis pangaruh (FMEA) atanapi mode kagagalan, épék sareng analisis diagnostik (FMEDA) tiasa ngabantosan ngaidentipikasi kagagalan anu teu dideteksi bahaya, sareng dimana sinyalna uji buktina kedah ditingkatkeun.
Loba prosedur test buktina ditulis dumasar pangalaman jeung template ti prosedur aya. Prosedur anyar sareng SIF anu langkung pajeulit nyauran pendekatan anu langkung direkayasa nganggo FMEA / FMEDA pikeun nganalisa gagal anu bahaya, nangtukeun kumaha prosedur tés bakal atanapi henteu bakal nguji pikeun gagal éta, sareng cakupan tés. Diagram blok analisa mode gagal tingkat makro pikeun sénsor dipidangkeun dina Gambar 2. FMEA biasana ngan ukur kedah dilakukeun sakali pikeun jinis alat anu khusus sareng dianggo deui pikeun alat anu sami kalayan pertimbangan jasa prosés, pamasangan sareng kamampuan nguji situs. .
Analisis kagagalan tingkat makro Gambar 2: Diagram blok analisis mode gagal tingkat makro ieu pikeun sénsor sareng pamancar tekanan (PT) nunjukkeun fungsi utama anu biasana bakal dirobih kana sababaraha analisa gagal mikro pikeun nangtoskeun sapinuhna poténsi gagal anu bakal diatasi. dina uji fungsi.
Gambar 2: Diagram blok analisis mode gagal tingkat makro ieu pikeun sénsor sareng pamancar tekanan (PT) nunjukkeun fungsi utama anu biasana bakal dirobih kana sababaraha analisa gagal mikro pikeun nangtoskeun lengkep poténsi kagagalan anu bakal diatasi dina uji fungsi.
Persentase kagagalan anu dipikanyaho, bahaya, teu kadeteksi anu diuji buktina disebut sinyalna uji bukti (PTC). PTC ilaharna dipaké dina itungan SIL pikeun "ngimbangan" pikeun gagalna leuwih lengkep nguji SIF. Jalma-jalma ngagaduhan kapercayaan anu salah yén kusabab aranjeunna nganggap kurangna sinyalna tés dina itungan SIL, aranjeunna parantos ngarancang SIF anu tiasa dipercaya. Kanyataan saderhana, upami sinyalna tés anjeun 75%, sareng upami anjeun ngitung jumlah éta kana itungan SIL anjeun sareng nguji hal-hal anu anjeun parantos nguji langkung sering, 25% tina kagagalan bahaya masih tiasa lumangsung sacara statistik. Kuring yakin teu hayang jadi dina 25%.
Laporan persetujuan FMEDA sareng manual kaamanan pikeun alat biasana nyayogikeun prosedur uji bukti minimum sareng sinyalna uji bukti. Ieu ngan ukur masihan pituduh, sanés sadayana léngkah tés anu diperyogikeun pikeun prosedur tés buktina komprehensif. Jenis analisis kagagalan anu sanés, sapertos analisa tangkal sesar sareng pangropéa anu dipuseurkeun reliabilitas, ogé dianggo pikeun nganalisis gagal anu bahaya.
Tés buktina tiasa dibagi kana tés fungsional pinuh (tungtung-tungtung) atanapi tés fungsional parsial (Gambar 3). Uji fungsional parsial biasana dilakukeun nalika komponén SIF gaduh interval tés anu béda dina itungan SIL anu henteu saluyu sareng pareum atanapi balikan anu direncanakeun. Penting yén prosedur uji bukti fungsional parsial tumpang tindih sahingga babarengan nguji sadaya fungsionalitas kaamanan SIF. Kalayan uji fungsional parsial, éta masih nyarankeun yén SIF gaduh tés bukti tungtung-ka-tungtung awal, sareng tés saterasna salami péngkolan.
Tés bukti parsial kedah dijumlahkeun Gambar 3: Tes bukti parsial gabungan (handap) kedah nutupan sadaya fungsi uji bukti fungsional pinuh (luhureun).
Gambar 3: Tés bukti parsial gabungan (handap) kedah nutupan sadaya pungsi tés bukti fungsional pinuh (luhureun).
Tés bukti parsial ngan ukur nguji perséntase modeu gagalna alat. Conto umum nyaéta tés klep parsial-stroke, dimana klep dipindahkeun sakedik (10-20%) pikeun mastikeun yén éta henteu macét. Ieu gaduh cakupan tés bukti anu langkung handap tibatan tés bukti dina interval tés primér.
Prosedur tés buktina tiasa béda-béda dina pajeulitna sareng pajeulitna SIF sareng filosofi prosedur tés perusahaan. Sababaraha perusahaan nyerat prosedur uji léngkah-léngkah anu lengkep, sedengkeun anu sanésna gaduh prosedur anu cukup ringkes. Rujukan kana prosedur sanés, sapertos kalibrasi standar, kadang dianggo pikeun ngirangan ukuran prosedur uji bukti sareng ngabantosan konsistensi dina uji. Prosedur tés buktina anu saé kedah nyayogikeun detil anu cukup pikeun mastikeun yén sadaya tés dilaksanakeun leres sareng didokumentasikeun, tapi henteu langkung rinci anu nyababkeun teknisi hoyong ngalangkungan léngkah. Gaduh teknisi, anu tanggung jawab ngalaksanakeun léngkah tés, awal léngkah tés anu réngsé tiasa ngabantosan mastikeun yén tés bakal dilakukeun leres. Sign-off tina tés buktina réngsé ku Pengawas Instrumen sareng wawakil Operasi ogé bakal ngantebkeun pentingna sareng ngajamin tés buktina parantos réngsé.
Eupan balik teknisi kudu salawasna diondang pikeun mantuan ngaronjatkeun prosedur. Kasuksésan prosedur tés buktina sabagian ageung aya dina panangan teknisi, janten usaha kolaborasi disarankeun pisan.
Kaseueuran tés buktina biasana dilakukeun di luar jalur nalika mareuman atanapi balik. Dina sababaraha kasus, tés buktina tiasa diperyogikeun dilakukeun online nalika ngajalankeun pikeun nyugemakeun itungan SIL atanapi sarat anu sanés. Uji coba online ngabutuhkeun perencanaan sareng koordinasi sareng Operasi pikeun ngamungkinkeun tés buktina dilakukeun sacara aman, tanpa prosés kesel, sareng tanpa nyababkeun perjalanan palsu. Butuh ngan hiji lalampahan spurious a make up sagala attaboys Anjeun. Salila jenis tés ieu, nalika SIF henteu sapinuhna sayogi pikeun ngalaksanakeun tugas kaamananna, 61511-1, Klausa 11.8.5, nyatakeun yén "Langkah-langkah kompensasi anu mastikeun operasi aman terus-terusan kedah disayogikeun saluyu sareng 11.3 nalika SIS aya dina. bypass (perbaikan atawa nguji). Prosedur manajemén situasi anu teu normal kedah nganggo prosedur uji buktina pikeun mastikeun ieu dilakukeun leres.
A SIF biasana dibagi jadi tilu bagian utama: sensor, solvers logika jeung elemen final. Aya ogé ilaharna alat bantu nu bisa pakait dina unggal tilu bagian ieu (misalna halangan IS, amps trip, interposing relays, solenoids, jsb) nu ogé kudu diuji. Aspék kritis pikeun nguji bukti unggal téknologi ieu tiasa dipendakan dina sidebar, "Sensor tés, solver logika sareng elemen akhir" (di handap).
Sababaraha hal anu langkung gampang pikeun uji buktina tibatan anu sanés. Seueur téknologi modern sareng sababaraha aliran sareng tingkat anu langkung lami aya dina kategori anu langkung hese. Ieu kalebet méter aliran Coriolis, méter vortex, méter mag, radar liwat-hawa, tingkat ultrasonik, sareng saklar prosés di-situ, pikeun sababaraha nami. Untungna, seueur ieu ayeuna parantos ditingkatkeun diagnostik anu ngamungkinkeun tés ningkat.
Kasusah uji buktina alat sapertos di lapangan kedah dipertimbangkeun dina desain SIF. Gampang pikeun rékayasa pikeun milih alat SIF tanpa pertimbangan anu serius ngeunaan naon anu diperyogikeun pikeun nguji alat éta, sabab éta sanés jalma anu nguji éta. Ieu ogé leres pikeun nguji parsial-stroke, nu mangrupakeun cara umum pikeun ngaronjatkeun hiji probabiliti rata SIF gagalna on demand (PFDavg), tapi engké dina tutuwuhan Operasi teu hayang ngalakukeun eta, sarta sababaraha kali bisa jadi teu. Salawasna nyayogikeun pangawasan pabrik tina rékayasa SIF ngeunaan uji bukti.
Tes buktina kedah kalebet pamariksaan pamasangan sareng perbaikan SIF upami diperyogikeun pikeun minuhan 61511-1, Klausa 16.3.2. Kudu aya inspeksi ahir pikeun mastikeun sagalana geus buttoned up, sarta dipariksa ganda yén SIF geus bener disimpen deui kana layanan prosés.
Nulis sareng ngalaksanakeun prosedur tés anu saé mangrupikeun léngkah anu penting pikeun mastikeun integritas SIF salami hirupna. Prosedur tés kedah nyayogikeun detil anu cekap pikeun mastikeun yén tés anu diperyogikeun dilaksanakeun sacara konsisten sareng aman sareng didokumentasikeun. Kagagalan bahaya anu henteu diuji ku uji bukti kedah dikompensasi pikeun mastikeun integritas kaamanan SIF dijaga cekap salami umurna.
Nulis prosedur tés buktina anu saé butuh pendekatan logis kana analisa rékayasa ngeunaan poténsi gagal anu bahaya, milih cara, sareng nyerat léngkah-léngkah tés bukti anu aya dina kamampuan uji pabrik. Sapanjang jalan, kéngingkeun mésér pabrik di sadaya tingkatan pikeun tés, sareng ngalatih teknisi pikeun ngalaksanakeun sareng ngadokumentasikeun tés buktina ogé ngartos pentingna tés. Tulis paréntah saolah-olah anjeun teknisi alat anu kedah ngalakukeun pagawéan, sareng yén kahirupan gumantung kana tés anu leres, sabab éta.
Testing sensors, logic solvers and final elements A SIF is typically divided up into three main parts, sensors, logic solvers and final elements. There also typically are auxiliary devices that can be associated within each of these three parts (e.g. I.S. barriers, trip amps, interposing relays, solenoids, etc.) that must also be tested.Sensor proof tests: The sensor proof test must ensure that the sensor can sense the process variable over its full range and transmit the proper signal to the SIS logic solver for evaluation. While not inclusive, some of the things to consider in creating the sensor portion of the proof test procedure are given in Table 1. Table 1: Sensor proof test considerations Process ports clean/process interface check, significant buildup noted Internal diagnostics check, run extended diagnostics if available Sensor calibration (5 point) with simulated process input to sensor, verified through to the DCS, drift check Trip point check High/High-High/Low/Low-Low alarms Redundancy, voting degradation Out of range, deviation, diagnostic alarms Bypass and alarms, restrike User diagnostics Transmitter Fail Safe configuration verified Test associated systems (e.g. purge, heat tracing, etc.) and auxiliary components Physical inspection Complete as-found and as-left documentation Logic solver proof test: When full-function proof testing is done, the logic solver’s part in accomplishing the SIF’s safety action and related actions (e.g. alarms, reset, bypasses, user diagnostics, redundancies, HMI, etc.) are tested. Partial or piecemeal function proof tests must accomplish all these tests as part of the individual overlapping proof tests. The logic solver manufacturer should have a recommended proof test procedure in the device safety manual. If not and as a minimum, the logic solver power should be cycled, and the logic solver diagnostic registers, status lights, power supply voltages, communication links and redundancy should be checked. These checks should be done prior to the full-function proof test.Don’t make the assumption that the software is good forever and the logic need not be tested after the initial proof test as undocumented, unauthorized and untested software and hardware changes and software updates can creep into systems over time and must be factored into your overall proof test philosophy. The management of change, maintenance, and revision logs should be reviewed to ensure they are up to date and properly maintained, and if capable, the application program should be compared to the latest backup.Care should also be taken to test all the user logic solver auxiliary and diagnostic functions (e.g. watchdogs, communication links, cybersecurity appliances, etc.).Final element proof test: Most final elements are valves, however, rotating equipment motor starters, variable-speed drives and other electrical components such as contactors and circuit breakers are also used as final elements and their failure modes must be analyzed and proof tested.The primary failure modes for valves are being stuck, response time too slow or too fast, and leakage, all of which are affected by the valve’s operating process interface at trip time. While testing the valve at operating conditions is the most desirable case, Operations would generally be opposed to tripping the SIF while the plant is operating. Most SIS valves are typically tested while the plant is down at zero differential pressure, which is the least demanding of operating conditions. The user should be aware of the worst-case operational differential pressure and the valve and process degradation effects, which should be factored into the valve and actuator design and sizing.Commonly, to compensate for not testing at process operating conditions, additional safety pressure/thrust/torque margin is added to the valve actuator and inferential performance testing is done utilizing baseline testing. Examples of these inferential tests are where the valve response time is timed, a smart positioner or digital valve controller is used to record a valve pressure/position curve or signature, or advance diagnostics are done during the proof test and compared with previous test results or baselines to detect valve performance degradation, indicating a potential incipient failure. Also, if tight shut off (TSO) is a requirement, simply stroking the valve will not test for leakage and a periodic valve leak test will have to be performed. ISA TR96.05.02 is intended to provide guidance on four different levels of testing of SIS valves and their typical proof test coverage, based on how the test is instrumented. People (particularly users) are encouraged to participate in the development of this technical report (contact crobinson@isa.org).Ambient temperatures can also affect valve friction loads, so that testing valves in warm weather will generally be the least demanding friction load when compared to cold weather operation. As a result, proof testing of valves at a consistent temperature should be considered to provide consistent data for inferential testing for the determination of valve performance degradation.Valves with smart positioners or a digital valve controller generally have capability to create a valve signature that can be used to monitor degradation in valve performance. A baseline valve signature can be requested as part of your purchase order or you can create one during the initial proof test to serve as a baseline. The valve signature should be done for both opening and closing of the valve. Advanced valve diagnostic should also be used if available. This can help tell you if your valve performance is deteriorating by comparing subsequent proof test valve signatures and diagnostics with your baseline. This type of test can help compensate for not testing the valve at worst case operating pressures.The valve signature during a proof test may also be able to record the response time with time stamps, removing the need for a stopwatch. Increased response time is a sign of valve deterioration and increased friction load to move the valve. While there are no standards regarding changes in valve response time, a negative pattern of changes from proof test to proof test is indicative of the potential loss of the valve’s safety margin and performance. Modern SIS valve proof testing should include a valve signature as a matter of good engineering practice.The valve instrument air supply pressure should be measured during a proof test. While the valve spring for a spring-return valve is what closes the valve, the force or torque involved is determined by how much the valve spring is compressed by the valve supply pressure (per Hooke’s Law, F = kX). If your supply pressure is low, the spring will not compress as much, hence less force will be available to move the valve when needed. While not inclusive, some of the things to consider in creating the valve portion of the proof test procedure are given in Table 2. Table 2: Final element valve assembly considerations Test valve safety action at process operating pressure (best but typically not done), and time the valve’s response time. Verify redundancy Test valve safety action at zero differential pressure and time valve’s response time. Verify redundancy Run valve signature and diagnostics as part of proof test and compare to baseline and previous test Visually observe valve action (proper action without unusual vibration or noise, etc.). Verify the valve field and position indication on the DCS Fully stroke the valve a minimum of five times during the proof test to help ensure valve reliability. (This is not intended to fix significant degradation effects or incipient failures). Review valve maintenance records to ensure any changes meet the required valve SRS specifications Test diagnostics for energize-to-trip systems Leak test if Tight Shut Off (TSO) is required Verify the command disagree alarm functionality Inspect valve assembly and internals Remove, test and rebuild as necessary Complete as-found and as-left documentation Solenoids Evaluate venting to provide required response time Evaluate solenoid performance by a digital valve controller or smart positioner Verify redundant solenoid performance (e.g. 1oo2, 2oo3) Interposing Relays Verify correct operation, redundancy Device inspection
A SIF ilaharna dibagi kana tilu bagian utama, sensor, solvers logika jeung elemen final. Aya ogé ilaharna alat bantu nu bisa pakait dina unggal tilu bagian ieu (misalna halangan IS, amps trip, interposing relays, solenoids, jsb) nu ogé kudu diuji.
Tés buktina sénsor: Tes buktina sénsor kedah mastikeun yén sénsor tiasa ngaraosan variabel prosés dina rentang anu lengkep sareng ngirimkeun sinyal anu leres ka SIS logic solver pikeun évaluasi. Sanaos henteu inklusif, sababaraha hal anu kedah dipertimbangkeun dina nyiptakeun bagian sénsor tina prosedur tés buktina dirumuskeun dina Tabél 1.
Uji bukti logika solver: Lamun uji bukti fungsi pinuh rengse, bagian nu solver logika dina accomplishing aksi kaamanan SIF sarta aksi patali (misalna alarm, reset, bypasses, diagnostics pamaké, redundancies, HMI, jsb) diuji. Tes bukti fungsi parsial atanapi sapotong kedah ngalengkepan sadaya tés ieu salaku bagian tina tés buktina tumpang tindih individu. Pabrikan solver logika kedah gaduh prosedur uji bukti anu disarankeun dina manual kaamanan alat. Lamun henteu jeung salaku minimum, kakuatan solver logika kudu cycled, sarta logic solver registers diagnostik, lampu status, tegangan catu daya, Tumbu komunikasi jeung redundancy kudu dipariksa. Pamariksaan ieu kedah dilakukeun sateuacan tés bukti fungsi pinuh.
Entong nganggap yén parangkat lunak éta saé salamina sareng logikana henteu kedah diuji saatos tés buktina awal salaku parobihan parangkat lunak sareng hardware anu henteu didokumentasikeun, henteu sah sareng teu teruji sareng apdet parangkat lunak tiasa ngarayap kana sistem dina waktosna sareng kedah dipertimbangkeun kana sakabéh anjeun. falsafah tés buktina. Manajemén log parobahan, pangropéa, sareng révisi kedah ditinjau pikeun mastikeun yén éta énggal sareng dijaga leres, sareng upami sanggup, program aplikasi kedah dibandingkeun sareng cadangan panganyarna.
Kudu ati-ati ogé pikeun nguji sadaya fungsi bantu sareng diagnostik pemecah logika pangguna (sapertos pengawas, tautan komunikasi, alat kaamanan siber, jsb.).
Uji bukti unsur ahir: Paling elemen ahir nyaéta klep, kumaha oge, alat puteran motor starters, variabel-speed drive sareng komponenana listrik lianna kayaning contactors na breakers circuit ogé dipaké salaku elemen final sarta modus gagal maranéhanana kudu dianalisis tur buktina diuji.
Modeu gagalna primér pikeun klep nuju macét, waktos réspon lambat teuing atanapi gancang teuing, sareng bocor, sadayana kapangaruhan ku antarmuka prosés operasi klep dina waktos perjalanan. Nalika nguji klep dina kaayaan operasi mangrupikeun pasualan anu paling dipikahoyong, Operasi umumna bakal nentang tripping SIF nalika pabrik beroperasi. Seuseueurna klep SIS biasana diuji nalika pabrik turun dina tekanan diferensial nol, anu paling henteu nungtut dina kaayaan operasi. Pamaké kedah sadar kana tekanan diferensial operasional anu paling parah sareng klep sareng épék degradasi prosés, anu kedah dipertimbangkeun kana desain klep sareng aktuator sareng ukuran.
Commonly, to compensate for not testing at process operating conditions, additional safety pressure/thrust/torque margin is added to the valve actuator and inferential performance testing is done utilizing baseline testing. Examples of these inferential tests are where the valve response time is timed, a smart positioner or digital valve controller is used to record a valve pressure/position curve or signature, or advance diagnostics are done during the proof test and compared with previous test results or baselines to detect valve performance degradation, indicating a potential incipient failure. Also, if tight shut off (TSO) is a requirement, simply stroking the valve will not test for leakage and a periodic valve leak test will have to be performed. ISA TR96.05.02 is intended to provide guidance on four different levels of testing of SIS valves and their typical proof test coverage, based on how the test is instrumented. People (particularly users) are encouraged to participate in the development of this technical report (contact crobinson@isa.org).
Suhu ambient ogé tiasa mangaruhan beban gesekan klep, ku kituna nguji klep dina cuaca haneut umumna bakal janten beban gesekan anu pangsaeutikna upami dibandingkeun sareng operasi cuaca tiis. Hasilna, uji bukti klep dina suhu anu konsisten kedah dipertimbangkeun pikeun nyayogikeun data anu konsisten pikeun uji inferensial pikeun nangtukeun degradasi kinerja klep.
Klep sareng posisi pinter atanapi pangendali klep digital umumna gaduh kamampuan nyiptakeun tanda tangan klep anu tiasa dianggo pikeun ngawas degradasi kinerja klep. Tanda tangan klep dasar tiasa dipénta salaku bagian tina pesenan pameseran anjeun atanapi anjeun tiasa nyiptakeun hiji nalika uji buktina awal pikeun janten garis dasar. Tanda tangan klep kedah dilakukeun pikeun muka sareng nutup klep. Diagnostik klep canggih ogé kedah dianggo upami sayogi. Ieu tiasa ngabantosan anjeun upami kinerja klep anjeun mudun ku ngabandingkeun tanda tangan klep tés buktina sareng diagnostik sareng garis dasar anjeun. Jenis tés ieu tiasa ngabantosan pikeun ngimbangan henteu nguji klep dina tekanan operasi anu paling parah.
Tanda tangan klep salami tés buktina ogé tiasa ngarékam waktos réspon sareng perangko waktos, ngaleungitkeun kabutuhan stopwatch. Ngaronjatkeun waktos réspon mangrupikeun tanda karusakan klep sareng ningkat beban gesekan pikeun mindahkeun klep. Sanaos teu aya standar ngeunaan parobihan waktos réspon klep, pola négatip tina parobihan tina uji bukti ka uji bukti nunjukkeun potensi leungitna margin kaamanan sareng kinerja klep. Uji bukti klep SIS modern kedah kalebet tandatangan klep salaku masalah prakték rékayasa anu saé.
Tekanan suplai hawa instrumen klep kedah diukur nalika uji buktina. Sedengkeun cinyusu klep pikeun klep cinyusu-balik nyaéta naon nutup klep, gaya atawa torsi aub ditangtukeun ku sabaraha spring klep dikomprés ku tekanan suplai klep (per Hukum Hooke urang, F = kX). Lamun tekanan suplai anjeun low, cinyusu moal niiskeun salaku loba, ku kituna kirang gaya bakal sadia pikeun mindahkeun klep lamun diperlukeun. Sanaos henteu inklusif, sababaraha hal anu kedah dipertimbangkeun dina nyiptakeun bagian klep tina prosedur uji buktina dirumuskeun dina Tabél 2.
waktos pos: Nov-13-2019